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INPUT-OUTPUT STABILITY ANALYSIS WITH MAGNETIC
HYSTERESIS NON-LINEARITY — A CLASS OF MULTIPLIERS

M. G. Sdonov‘ and K. K.rimlou‘

Department of Electrical Engineering-Systems
University of Southern California
Loes Angeles, CA 90089-0781

Abstract

A class of positive real multipliers is
obtained to establish frequency domain conditions
for stability of feedback systems containing
ferromagnetic hysteresis non-linearity,

I. Introduction

Popov Criterion [1] and its extensions, such
as derivation of more general classes of
multipliers [2],[3], consider non-linear elements
that are memoryless and pass through the origin,
i.e., 9(0) = 0. Ap important class of non-
linearities, ferromagnetic hysteresis, is
neither non-dynamic nor passes through the
origin. Therefore, to analyze the stability of
systems containing this type of non-linearity,
appropriate modifications to Popov's approach
should be made.

Published material to address this problem
is scarce. Authors in (4] obtained multipliers of
the form 1+qjw. q > 0 for finite gain L,-stability

of magnetic hysteresis feedback systems. This
paper generalizes the results of [4]. The only
other work known to us that addresses the
problem of stability of magnetic hysteresis
systemns is by Lecoq and Hopkin [5), where by
letting the derivative of their input signals to
belong to exponentially weighted L,-spaces, they

obtained similar multipliers, l+qjw, for bounded
input-bounded output stability of h .teresis
systems. For stability of systems with other
types of hysteresis non-linearity, such as
backiash and relay, ses Yakubovich [6], Hsu
and Meyer {7], Kodama and Shirakawa (8],
Maeda, Ikeda, and Kodama (9],({10].

In the present paper we obtain a general
class of positive real multipliers for the
stability analysis of feedback systems of the
type shown in Fig. (1a), where N is a ferro-
magnetic hysteresis non-linearity and H is a
linear alement. The analysis is done by substi-
tution of the model for the hyateresis by Chua
and Stromsmoe [11]. Then the concepts of posi-
tivity and passivity are utilized to deriv e freguency

*Research supported {n part by AFOSR Grant
80.0013 and in part by NSF Grant INT-8302754.
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Fig. 1

domain conditions on the linear element H for
finite gain L,-stability of the feedback system.

II. Hysteresis Modeling

The model for ferromagnetic hysteresis of
Chua and Strosmoe [11] is given by

%EL = go[x(t) - fo(y(t)) 2. l)l
where x(t) and y(t) are real-valued, continuocus
input and output signals of the hysteresis non-
linearity representing the current i(t) and the
flux linkage ©(t) of an inductor (transformer);
and g and f are strictly monotonically
increasing, differentiable, onto functions
enjoying the important property of

g(0) = £0) = 0

Equation (2.1) models the behavior of
ferromagnetic hysteresis successfully and with
very good accuracy, [t predicts the expansion
of the area of the hysteresis loop with
increasing frequency and predicts minor
hysteresis loops such ss commonly occur
when a d-¢ plus perfodic input is applied.

ro: Functional Composition.

4prrovey fopmete - )
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After plotting the hysteresis loop for a
convenient signal, simple procedures are given
in [11] to determine g and { for that loop. When
non-linear functions g and f are determined, they
can be substituted in the model of equation (2.1])
to predict, with good accuracy, the hysteresis
shape and/or its output for any arbitrary input,
For further detail and examples see [11}.

LI, Mathematical Preliminaries

Definition (3.1) [12): Let H: Lo~ L,

Then H is passive iff there exists some constant
B€R such that

<Hx, x>, > 8 VxELze

¥ TEJ
Definition (3.2) [12]): Let H: LZe" LZe'
Then H is strictly passive iff there exists 6§ > 0
and some constant B ¢ R such that
<Hx, x>0 > 8 [Ix.rH +8 W¥xEL,,
¥TET

T
2

a
Definition (3.3) [13]: The feedback system
of Fig. (1a) is said to be finite gain Lz-ntable if
a) e, oz.yl.yzéLz ¥ ul.uZELZ
b) There exists constants p, and p, such that
ley Il eyl llyy Uty ol < 0l el
¥ uy. uZGLZ
]

In the following well-known theorem. the
concept of passivity is used to establish finite
gain L ,-stability of the feedback system shown

in Fig. (la), where N and H are considered to
be operators in the general sense.

Theorem (3.1): Consider the feedback
system shown in Fig. (la)

e = u - Hez

. = u, + Nel
where H,N: Lz." LZe' Assume that for any
u;. uze l.2 there are solutions € ezé LZe’
Suppose that there are real constants v, 5, and
¢ such that

Iuxliy < vilxliyp (3.1
<Hx,x>p 2 Hlx,’!.i. (3.2}
<x.Nx>, 2 t“Nx"%. (3.3)

¥ xGLz.. ¥TES
Under these conditions if
S+e¢ >0 (3.4)
then the feedback system {is finite gain

L,-stable.
2 ®

Proof: See for example [12].

Definition (3.4) [12]: Let H: L,~L,. Then
H is positive iff

<Hx, x> >0, v:ex.z

Note that unlike passivity, which is defined
onlL,.. positivity is defined on LZ.

Hysteresis N\

Table |
Notations
Symbo! Meaning
R, l‘ Fiald of real snd positive real sumbers.
L, The apsce of siguals such that | |x(t) jer
exists. ped
L, Tha space of bounded signals.
Lz The opace of aignals which are square
¢ iatsgrable on every bousced inierva.
[0.T] [14]).
L The Hiloer: space of signals which are

square integrable on (-#,®) with 1aner
product < a,y >.

ex,y> [y x(n 4
-t

[y /x>

cny>y [Ty st o
[-]

M=ty SRy

&y Truscated x {15].
7 Sat of instances of time of interest.
A Coavolution Algebrs [12].

Re (-}  Reslpart of 8 complex quantity.

Next, a positivity result for a cascade
combination of a linear and a non-linear
operator {s presented.

Theorem (3.2) [13): Assume G: L,~L, is
8 linear operator, with G(jw) €L _, which maps
xGLz into the element in L, and @ LZ-LZ is

a monotone non-decreasing non-linear operator.
Let G(jw) be given by the Fourier-Stieljes
integral

-
G(jw) = 1 -I 17 av(r) (3.4




where V(1) is any monotone non-decresasing
function of total variation less than or equal to
unity. Then Go is a positive operator on LZ

]

IV. Main Results

Substitution of the model given by equation
(2. 1) for the hysteresis non-linearity N gives the
feedback system of Fig. (2). Note that although
the standard magnetic hysteresis non-linearity,
a® shown in Fig. (1b), is the plot of flux linkage
{®(t)) vs. current {i(t)) of an inductor (trans-
former). but from circuit analysis point of view,
the input and output of the model replaced for N
as shown in Fig. (2) are current through uéd
voltage across the inductor (transformer).

The class of positive real multipliers is
defined next,

Definition (4. 1): M is the class of multipliers
M(s) of the form:
n 'i(“zo)
M(s) = + + L —
{8) = B (8+2) T
where: !°=0 orl; .zo, @ 20 a, >0, ¥i, ifl;
p.‘>0. ¥i; z°<Mim {pi}. g
M is similar to the class of multipliers
studied in [2] and [3] in stability analysis of
standard Popov type feedback systems with
monotone non-decreasing non-linearity. It is
shown that {2], M(s) can also be represented in
the form
T (s+}))
i=1  *
k
n (s+n,)
izl
where: £=k or k+l; 0< xl< n < xz< Ny<enr
The above representation implies that M(s)
consists of a combination of real valued poles
and zeroes in the left half plane, where the first
singularity is a zero, and the poles and zeroes
alternate.

Next, the main stability result is presented.

Theorem (4.1): Consider the feedback
system of Fig. (2), where h(t): L‘(R+)3. and
h(t)€A. Assume that for any u;.u,€EL,, there

are solutions . ez.yl.yze Lo U for some
constant § > 0 and MEM

M(s) =

inf Re {M(je)H(jw)} = >0, ¥w>0 (4.1)
then ¥ ul,'nl.nzel.z.

zﬂu voltage across an inductor (transformer)
is proportional to the rate of change of the flux
linkage, the constant of proportionality being
the aumber of turns,

3h(t) is impulse response of H(s).

3) (i) e),2).0,,y,.7,,¥,€L,;
(ii) There exists constants o‘. c'l. and e,
such that

lle 0.l Il Ne,ll, lby, .y, 11 5,0
< pylluylleny i oo, ta,t
i.e., finite gain L,-stability,

b) . ez,yl.yzEL. are continuous, and go to

zeroas t < o,
=

Proof: By taking the truncated inner-
products of each branch of the feedback system
and utilizing Theorem (3. 2). positivity and
consequently passivity of each branch is proven.
Then using Theorem (3.1), stability of the
system is deduced.

For detail of the proof, see Appendix,

Upper and lower bounds of non-linearities
g and f can be taken into consideration to
obtain less conservative classes of linear

element H(s). As an example, an upper bound
of g is exploited in the following Corollary:

Corollary (4.1): Consider the feedback
system of Fig. (Z), where g<sector (o0,.k),
28L) <, ht) €L)(R), B(IEA Assume that for
any ul.uzé-Lz. there exists solutions e ey
yl.yzé L,. [l for some constant 6 >0 and
MEM

. . 1 .
Re {M()w) [H(Gw) + f]} =8>0, ¥1>0 (4.2)

then ¥u 'i'l' u,, hzé L, conclusions of Theorem

1
(4. 1) bold. -
Proof: See Appendix. =

V. Conclusion

A class of positive real multipliers is
obtained to establish frequency domain condi-
tions for stability of f{eedback systems
containing magnetic hysteresis non-linearity.
To obtain the results, the model of Chua and
Stromsmoe [11] for hysteresis is employed
and the concepts of positivity and passivity are
utilized.

V1. Appendix

To simplify the proof of Theorem (4. 1) and
Corollary (4.1), the following two lemmas will
be proved first,

Lemma (A.1): Let g€sector (0, =),
9&5)_ >0, and MO, Then the system of
Fig. (A.1) {s passive.




—_—s M g(-)

Fig. (A.1)

Proof: For all xELZe and T >0
<xy>p = <x,gM’lx>T. Let

Mlx-x.

= <Mi.g§>-r
= <8BS %, gi>T +< aozoi. gx >r
+ < E(S)X, gk >y (A.1)

where Sk = $-(%), gk = g(%). and I(S) is the
rational part of M(s). The first two inner-
products of equation (A.1) are passive [4].

<I(S)x, gx >p = < P Z(S)P TgPTx >

=< p £ (5)p‘gp.rx>
=< P.rx T* (S)gP x>
But PpX€L,, thus, Z*(S) is a mapping of L,~ L,.
Therefore, by Theorem (3. 2)
< P.r:‘:. £*s)g P.ri > >0
which implies passivity of Fig, (A.1). o

Lemma (A.2): Let £(+)€(0, =), -‘%lxﬂ >0,

and ME7.. Then the system of Fig. (A.2) is
passive. s

£(+) M

wl—

Fig. (A.2)

Proof: For all x(t)€ LZ and T > 0,
<x,y>p = <x, Mf-sx> where -sx- J.xdt.

Let éx = X, then xELze since x€ LZe‘

<Si MIx >r
= € Sk, B°S£x >

T + < Sx, aozofx >_r
+ < S%, I(S)fx >r (A.2)

The first two inner-products of equation (A.2)
are passive [4].

<S%IGMR>  =<x, LT P
s <Px, P I(S)f 4 Prx>
LetZrS%P.rx. then SE, = P_x€L,
=<S§.r P :(S)fx.t_

z <P, Sx.r T.(S){x.r>

But P.I.Sx_r = P.l.x = Sx.r
=< sir. z(S)ti.r >
= < £%(S) sir, zir >
Substitution of Z¥*(S) implies that: ST*(s) = z oS
n a,(p;-2_}(-S) i=1

+ £¥(S) where T%(5) 2 . 1—7575——- . Then

=< Z qu.r f“r>+<z(s)"1"f’ﬁ->

The first inner-product is passive [4],
while the second one is positive, by Theorem
(3.2). Thus the passivity of Fig. (A.2) follows.

[}
“l v 01 el e =) e yl
M7 . M gl+)
Ya r M r 1) < %
+
M H(s)
u
Y2 ) 2
Fig. (A.3)

Proof of Theorem (4.1): By inclusion of the
multiplier M(s), transform the feedback system
of Fig. (2) to the one shown in Fig. (A.3). For
the feed forward block:

<yp & >p T <ypErp <y

By Lemmas (A.1) and (A, 2), the inner products
on the right-hand side of the above equality are
passive., Thus, the feed forward biock of

Fig., (A.3) is passive,

The feedback block of the above system is
strictly passive with finite gain if the conditions
set on H(s) and inequality (4. 1) are satisfied.

Since \'xl = m(t) * u;. where m(t) is Inverse
Laplace Transform of M(s). and u,, hlex_z. thus
'l(t)GLz Therefore, by Theorem (3.1). the

feedback system of Fig. (A. 3) is finite gain
Lz-nable i.e., el. €Y, yzeL and

e, eyl iy . Ilvzllso ta y@® )l +0,0la,t
But
g @l = Il mee) * w0l
< oyllayli + oyl I

The last inequality is obtained by substitution
of m(t) and simplification of the norm. Thus:

Mty




From Fig. (A.3), y,2m i) #§,-m-Lr)e L,
and 7,€L, implies that y,(t), ¥,(t)EL, (12,
Appendix C]. Furthermore, "YZ“L = m'l(t)*
- , - -~ 2
7ol < lm el I7p0l (12 %App.C1.

1

m'l(t)é L, implies that Hm'l(t)HL = C, s constant.
Thus 1

y ()i, < Ciig,ll

2 LZ 2 LZ
= Colllul\hcwl![\illl+Coz|lu2!l

On the other hand, ¥,= Yty *§,. Similar
upper bounds for !’,&2“ are immediate, since
mlwer,.

Similarly. €= m'l(t)* 31. Thus, similar
conclusions as y, for ¢ follow immediately.

b) y,.¥,€L, and e e'lél..z imply that
y.e€L . are continuous, and go to zero as t ~®

[13]. Since the model, i.e., equation (2.1), is
& continuous mapping from input to output [11],
therefore, elél..’. and el(t)— Oast—~= imply

that the same properties hold for yl(t). i.e.,
yl(t)éL‘. is continuous, and go tc zero as t ==,

Similar conclusions for e, are immediate.
B
Proof Outline of Corollary (4.1): Apply a

positive feedback of gain % around g. To

compensate for it, apply a positive feed-
forward with gain & to H(s). Let = @ 1)L
Then g€sector (0, =), is monotone increasing,
and g(0) = 0. Follow the same procedure as
Theorem (4.1). Conclusions are immediate.
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